Acute Rejection in Kidney Transplantation and Early Beginning of Tacrolimus

Sergio Salcedo-Herreraa,*, Jessica L. Pinto Ramireza, Andrea García-Lopezb, Javier Amaya-Nietob, and Fernando Girón-Luquec

aDepartment of Transplantation Nephrology, Colombiana de Trasplantes, Bogotá, Colombia; bDepartment of Transplantation Research, Colombiana de Trasplantes, Bogotá, Colombia; and cDepartment of Transplantation Surgery, Colombiana de Trasplantes, Bogotá, Colombia

ABSTRACT

Background. Although tacrolimus is an effective immunosuppressive drug used for preventing biopsy proven acute rejection (BPAR) in kidney transplanted patients, its nephrotoxicity may compromise renal function and lead to delayed initiation because of its side effects. This study aimed to evaluate the safety of early initiation of tacrolimus in the occurrence of BPAR during the first 90 days post transplant.

Methods. We conducted a retrospective cohort study involving 315 patients who underwent kidney transplantation from 2015 to 2017. Comparisons were performed between 2 groups according to whether the start time of tacrolimus therapy was delayed or not delayed. Cox proportional hazards models were used to examine the association between variables and the occurrence of BPAR.

Results. The incidence of BPAR was 14.9% (n = 47) and it was significantly higher in the delayed group (19.4% vs 6.4%; P = .002). Delayed initiation tacrolimus group was significantly associated with the risk of BPAR (hazard ratio: 2.95; P < .036). The overall mortality rate was 2.5% (n = 8) and there was no association between delayed initiation therapy and death (P = .56).

Conclusion. Our study confirmed that delayed initiation of tacrolimus in patients with delayed graft function is associated with a high risk of BPAR.

KIDNEY transplantation is the election treatment for end-stage renal disease [1]. Renal allograft survival is affected by repetitive episodes of biopsy proven acute rejection (BPAR), which is a frequent complication in the post-transplant period [2]. Biopsy proven acute rejection (BPAR) causes morbidity, as well as its treatment, which includes high dosages of steroids producing over immunosuppression states that contribute in some cases to infection and other complications [3].

Calcineurin inhibitors (CNIs) like tacrolimus are the cornerstone in the maintenance of immunosuppression treatment in kidney transplantation, and they have improved short-term outcomes since its introduction to the market [4–6]. Even though tacrolimus is widely used in renal transplantation to help prevent acute and chronic rejection, ironically, arterial hypertension and alteration of renal function are its most notable side effects [7]. Described nephrotic effects may lead to delay CNIs therapy during the early post-transplant period [8]. Randomized trials have shown that antilymphocyte induction therapy is effective in preventing acute rejection, which can help in delayed initiation of tacrolimus to avoid early tacrolimus-related nephrotoxicity [9–11]. However, avoiding tacrolimus initial therapy may result in inadequate immunosuppression and acute graft rejection [12]. The benefits of delayed initiation of tacrolimus to avoid subsequent nephrotoxicity are still controversial. Additionally, reduction in BPAR rates could
impact long-term outcomes. This study aimed to evaluate
the safety of early initiation of tacrolimus in the occurrence
of BPAR during the first 90 days post transplant.

PATIENTS AND METHODS
Study Design and Population

This retrospective cohort analyses involved data from 315 patients
who received kidney transplantation at our institution from January
2015 to July 2017. All patients received standard induction therapy
with basiliximab or antihuman thymocyte immunoglobulin accord-
ing to immunologic risk. All patients received a fixed-dose of
methyldprednisolone perioperatively for 3 days with a transition to
fixed-dose oral prednisone by postoperative day 4 up to day 9 post
transplant when steroids were withdrawn.

Only patients older than 18 years who underwent their first
kidney transplantation were included. Exclusive criteria were graft
thrombosis (arterial or venous) and autotransplant.

Patients were divided into 2 groups according to whether the
start time of tacrolimus therapy was delayed or not delayed. The no-
delay tacrolimus group (NDTG) had their tacrolimus administered
within 24 hours of transplantation, and the delayed tacrolimus
group (DTG) had their tacrolimus administered after 24 hours of
transplantation. Initiation of tacrolimus treatment was imple-
mented once creatinine decreased to less than 3.5 mg/dL. Delayed
graft function was defined as a patient requiring dialysis in the first 2
weeks after transplantation.

Outcomes

The primary endpoint was BPAR occurrence within 90 days of
transplantation and it was classified under parameters described by
Banff (2015) [13,14]. Biopsy was performed on those patients with
increase of serum creatinine by >20% from baseline. The secondary
endpoint was mortality rate.

Statistical Analysis

Frequencies and percentages were used for categorical variables.
The distribution of the numerical variables was obtained by the
Shapiro-Wilk test and were reported as medians and interquartile
ranges in the descriptive statistics of this study. Comparisons be-
tween the 2 groups were performed using independent Student’s t
test or Mann-Whitney U test. Categorical variables were compared
between groups using χ^2 test.

Variables with statistically significant differences were used to
perform additional analysis.

BPAR rates in the 2 groups were estimated using the Nelson-
Aalen method and compared with the log-rank test. Multivariable
analysis was performed using Cox proportional hazard model con-
taining at the outset all covariates significant in the univariate an-
alytics. Log-rank test was used to determine the relation between
qualitative variables and BPAR. $P < .05$ was considered as statis-
tically significant. The proportional hazards assumption was
assessed. The method of backwards stepwise regression was carried
out to select a more parsimonious model.

Ethics Considerations

This study was approved by the ethics research committee of the
institution, acting in concordance with local and national regula-
tions, as well as with the Helsinki declaration. Confidentiality of all
patients was secured all the time during the execution of the research.

RESULTS

Clinical features of patients are summarized in Table 1. A
total of 315 recipients were included (109 patients in the no-
delay tacrolimus group and 206 in the delayed tacrolimus
group). There were significant differences between groups in
sex (male 47% vs 61%; $P = .017$ in the NDTG and DTG, respec-
tively), mean of age (NDTG 40 vs DTG 47; $P = .000$),
donor type (deceased donor: NDTG 16.5% vs DTG 85.9%;
$P = .000$), cold ischemia time (NDTG 1 hour vs DTG 15
hours; $P = .000$), induction therapy (basiliximab NDTG
11.9% vs DTG 21.3%; $P = .000$), expanded criteria grafts (DTG
38.3% vs NDTG 28.6%; $P = .000$), and delayed graft function (NDTG 3.6% vs DTG 8.3%; $P = .000$). The mean timing of tacrolimus
administered in the DTG was 10 (interquartile range 14)
days after transplantation. There was no significant differ-
ence between the 2 groups regarding maintenance immu-
unosuppression regimen including tacrolimus dose (not
shown) and whole-blood concentration (day 15 $P = .224$;
day 45 $P = .058$) during the study period.

The overall BPAR rate during the first 90 days post
transplant was 14.9% ($n = 47$). Median time of presentation
of BPAR was at 45 days after the procedure, ranging be-
tween 13 days and 90 days. When considering Banff criteria
[14] to classify the severity of BPAR, this study found that
grade 1A was the most common presentation with 53.1%
($n = 25$), 11 (23.4%) patients showed a 1B grade BPAR,
grade 2B occurred in 1 (2.3%), and the remaining 10
(21.2%) had a biopsy reported as borderline. As shown in

Table 1. Recipient Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>NDTG n = 109</th>
<th>DTG n = 206</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex (%)</td>
<td>52 (47.1)</td>
<td>127 (61.6)</td>
<td>.017</td>
</tr>
<tr>
<td>Age, y (SD)</td>
<td>40 (12.3)</td>
<td>47 (13.4)</td>
<td>.000</td>
</tr>
<tr>
<td>Donor type (%)</td>
<td></td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>Deceased</td>
<td>18 (16.5)</td>
<td>177 (85.9)</td>
<td></td>
</tr>
<tr>
<td>Living</td>
<td>91 (83.5)</td>
<td>29 (14)</td>
<td></td>
</tr>
<tr>
<td>Cold ischemia time, h (IQR)</td>
<td>1 (1.3)</td>
<td>15 (11)</td>
<td>.000</td>
</tr>
<tr>
<td>PRA I, negative (%)</td>
<td>97 (89)</td>
<td>188 (91.2)</td>
<td>.514</td>
</tr>
<tr>
<td>PRA II, negative (%)</td>
<td>92 (84.4)</td>
<td>188 (91.2)</td>
<td>.065</td>
</tr>
<tr>
<td>Underlying disease (%)</td>
<td></td>
<td></td>
<td>.077</td>
</tr>
<tr>
<td>Glomerular</td>
<td>34 (31)</td>
<td>42 (20.3)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6 (5.5)</td>
<td>32 (15.5)</td>
<td></td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>12 (11)</td>
<td>23 (11)</td>
<td></td>
</tr>
<tr>
<td>Congenital</td>
<td>10 (9.1)</td>
<td>18 (8.7)</td>
<td></td>
</tr>
<tr>
<td>Obstructive</td>
<td>5 (4.5)</td>
<td>7 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Induction therapy (%)</td>
<td></td>
<td></td>
<td>.039</td>
</tr>
<tr>
<td>ATG</td>
<td>96 (88)</td>
<td>162 (78.6)</td>
<td></td>
</tr>
<tr>
<td>Basiliximab</td>
<td>13 (11.9)</td>
<td>44 (21.3)</td>
<td></td>
</tr>
<tr>
<td>Expanded criteria grafts (%)</td>
<td>0</td>
<td>59 (28.6)</td>
<td>.000</td>
</tr>
<tr>
<td>Tacrolimus levels (ng/mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 15 post transplant (IQR)</td>
<td>3.5 (3.3)</td>
<td>3.8 (3.8)</td>
<td>.224</td>
</tr>
<tr>
<td>Day 45 post transplant (IQR)</td>
<td>5.6 (2.5)</td>
<td>5.2 (2.4)</td>
<td>.058</td>
</tr>
<tr>
<td>Delayed graft function (%)</td>
<td>4 (3.6)</td>
<td>79 (38.3)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Abbreviations: ATG, anti-human thymocyte immunoglobulin; DTG, delayed tacrolimus group; IQR, interquartile range; NDTG, no-delay tacrolimus group; PRA, panel reactive antibody; SD, standard deviation.

*Statistically significant difference.
Table 2 incidence of BPAR over the study period was significantly higher in the DTG (19.4% vs 6.4%; \(P = .002\)).

A Cox regression model was performed using significant variables previously determined by bivariate analysis. Male patients were found to have 2 times the risk of having BPAR compared with female patients. Patients who had delayed tacrolimus initiation had nearly 3 times the risk of having BPAR compared with the control group (Fig 1). Data are shown in Table 3.

Mortality Rate
The overall mortality rate was 2.5% (n = 8) and there was no association between delayed initiation therapy and death (\(P = .56\)).

DISCUSSION
As part of our clinical practice, in patients who had early graft dysfunction (creatinine >3.5 mg/dL post transplant) tacrolimus start was delayed based on findings of nephROTOXICITY (arteriolar vasoconstriction and raise of oxygen free radicals) that could defer renal function recovery [15–17]. An alternative treatment protocol widely established consists in starting CNI the first day after renal transplantation without considering renal function, and this practice keeps BPAR rates close to 10.4% [8]. Discrepancy on those concepts motivated this study in which we looked for the safety of early initiation of tacrolimus in the occurrence of BPAR during the first 90 days post transplant. What we found was that patients who began tacrolimus administration after 24 hours of kidney transplantation had nearly 3 times the risk of developing BPAR compared with those who started tacrolimus before 24 hours after surgery. These findings suggest that patients who had a late start of tacrolimus could be subimmunosuppressed during the initial period after transplantation, and therefore it was considered paramount to find the impact of delayed tacrolimus initiation in BPAR occurrence.

Historically, tacrolimus has been started looking for ideal blood levels early after renal transplant, hoping that this treatment strategy would diminish BPAR incidence [18–21]. However, results are contradictory in some cases, and this affirmation could be questioned as the next authors show. Borobia et al [22] found that patients that presented BPAR had lower tacrolimus levels in the fifth and seventh day post transplant compared with those who did not show alterations in the same period. In the same way, other authors have found similar results suggesting that there is a significant relationship between tacrolimus levels and BPAR prevalence [23–25] Conversely, Boumar et al [8] did not find any significant difference between tacrolimus concentrations at days 3, 10, 14, and 30 and 6 months post transplant, and BPAR occurrence. We did not find a correlation between tacrolimus levels and BPAR rate.

Cumulative incidence of BPAR found by our study was 14.9% compared with the results showed by Flechner et al [26] in the ORION study of 8.8%, which seems to be high. However, as shown by Albano et al [27] BPAR incidence could range between 10.3% and 16.1%. Similarly, Jones-Hughes et al [28] published a systemic review in 2016, and although it reported high heterogenicity in BPAR prevalence ranging between 12.7% and 26%, it showed BPAR incidence similar to what we found in this study. Various other studies have analyzed the relationship between different immunosuppressants during the post-transplant period and BPAR occurrence considering tacrolimus blood levels mainly [6,22,29–32]. Nevertheless, to the best of our knowledge, there is not enough research focused on establishing the ideal moment to start tacrolimus and its

<table>
<thead>
<tr>
<th>Table 2. Features of Post-transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>BPAR (%)</td>
</tr>
<tr>
<td>Borderline</td>
</tr>
<tr>
<td>1A</td>
</tr>
<tr>
<td>1B</td>
</tr>
<tr>
<td>2B</td>
</tr>
<tr>
<td>Patient survival (%)</td>
</tr>
<tr>
<td>Delayed graft function (%)</td>
</tr>
</tbody>
</table>

Abbreviations: BPAR, biopsy proven acute rejection; DTG, delayed tacrolimus group; NDTG, no-delay tacrolimus group.

<table>
<thead>
<tr>
<th>Table 3. Cox Proportional-Hazards Regression for BPAR Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Sex (male)</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Donor (live)</td>
</tr>
<tr>
<td>Cold ischemia time</td>
</tr>
<tr>
<td>Expanded criteria</td>
</tr>
<tr>
<td>Tacrolimus initiation (delayed)</td>
</tr>
</tbody>
</table>

Abbreviations: BPAR, biopsy proven acute rejection; CI, confidence interval; HR, hazard ratio.
relationship with BPAR. This paper contributes with valuable information of having found that patients who began tacrolimus after 24 hours post transplant have a higher risk of BPAR. Because of the observational and retrospective methodology used in this research, the causality relationship between BPAR and tacrolimus start has limitations. Additionally, because of incomplete data of quantitative panel reactive antibody measures in 100% of cases, the variable could not be included and analyzed on the Cox regression. Finally, and because follow-up was kept for 90 days, graft survival analysis is missed, and future papers should include this outcome.

This study suggests that delayed tacrolimus initiation in kidney transplantation raises the risk of having BPAR during the first 90 days after the procedure, considering the impact of this fact over morbidity and graft survival. We also reaffirm previous findings that CNIs are determinant in protecting patients against BPAR occurrence, especially during the first days after the surgery.

REFERENCES

